Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

Site Navigation : Introduction of Home Edge Project | Home Edge Platform Architecture and Modules | Technical Requirements Details and Use Cases (TBD)


Definition : Technologies of Home Edge Project

  • Technologies that compute and proceed user data in real-time by using distributed edge devices at home network.
  • BENEFIT : Reinforcement of user privacy, low latency
  • Performance examples when employing Home Edge Project technologies

Smart TVHome Edge **
* # of Cores428
* Memory2 GB12 GB

Service examples

Voice recognition for device control

(Required anticipated size of ML Model : 20 MB)

Voice recognition for contents searching (e.g. media, retail, etc.)

(Required anticipated size of ML model : 100 MB)

* Given number is an example referring from the product specification available from the Market (TV, Refrigerator, Air Conditioner, Speaker, and Mobile Phone).

** It is assumed that there are 5 edge devices at home enabling the Home Edge Project technologies in this example.

Highlights : Required Technologies

  • Edge Orchestration : for deploying / searching / and managing services for distributed edge devices at home.
Key FeaturesDescription
Edge Device / Service DiscoveryDiscovery on edge devices and their services (e.g. voice recognition, device control, etc.)
Resource Capability ExchangeExchange the available (computing) resource information (e.g. CPU, GPU, NPU, Storage, type of connected devices, etc.)
Topology DecisionDecision on Master / Slave device roles, devices that are able to interoperate with cloud
Real-time MonitoringOffers network connection status (e.g. power on / off), services based on (computing) resource at home
  • Distributed & Parallel Machine Learning : for enabling inference / model learning at home with low latency.
Key FeaturesDescription
Data ParallelismDistribution and Parallel ML through data partition into multiple edge devices at home
Service ParallelismDistribution and Parallel ML through multiple services into multiple edge devices at home
Model ParallelismDistribution and Parallel ML through knowledge model partition into multiple edge devices at home
  • No labels